Affine actions from 3-fold flops, and tilings of the plane

Michael Wemyss

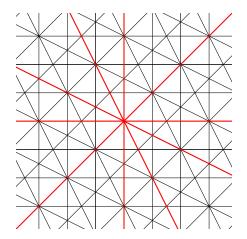
University of Glasgow www.maths.gla.ac.uk/~mwemyss

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

0/17

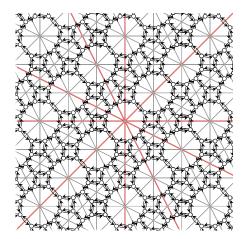
Purpose of this Talk

To explain the following tiling, which I view as an affine version of symmetries of the pentagon D_5 , and its applications.



Purpose of this Talk

To explain the following tiling, which I view as an affine version of symmetries of the pentagon D_5 , and its applications.



Motivation I: Surfaces

Suppose that $f: X \to \mathbb{C}^2/G$ is the minimal resolution of a Kleinian singularity, that is, $G \leq SL(2,\mathbb{C})$. The key point is that the fibre $C := f^{-1}(0)$ with reduced scheme structure decomposes

$$C^{\mathrm{red}} = \bigcup_{i=1}^{n} C_i$$

with each $C_i \cong \mathbb{P}^1$. The curves intersect in an ADE arrangement.

Motivation I: Surfaces

Suppose that $f: X \to \mathbb{C}^2/G$ is the minimal resolution of a Kleinian singularity, that is, $G \leq SL(2,\mathbb{C})$. The key point is that the fibre $C := f^{-1}(0)$ with reduced scheme structure decomposes

$$C^{\mathsf{red}} = \bigcup_{i=1}^n C_i$$

with each $C_i \cong \mathbb{P}^1$. The curves intersect in an ADE arrangement. The sheaves $E_i := \mathcal{O}_{C_i}(-1)$, and also the sheaf $E_f := \mathcal{O}_C$, are examples of spherical objects, namely

$$E\otimes \omega_X\cong E$$
 and $\operatorname{Ext}^t_X(E,E)\cong \left\{egin{array}{cc} \mathbb{C} & ext{if }t=0,2\ 0 & ext{else.} \end{array}
ight.$

Motivation II

Recall that, for an ADE (or extended ADE) graph Γ , the *braid* group is defined

$$B_{\Gamma} := \langle s_i \mid s_i s_j s_i = s_j s_i s_j \text{ or } s_i s_j = s_j s_i \rangle$$

Seidel–Thomas: there is an action of the braid group on $D^{b}(\operatorname{coh} X)$, that is, there is a group homomorphism

$$B_{\Gamma} \rightarrow \operatorname{Auteq} \operatorname{D^b}(\operatorname{coh} X)$$

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

which sends $s_i \mapsto T_{E_i}$.

Motivation II

Recall that, for an ADE (or extended ADE) graph Γ , the *braid* group is defined

$$B_{\Gamma} := \langle s_i \mid s_i s_j s_i = s_j s_i s_j \text{ or } s_i s_j = s_j s_i \rangle$$

Seidel–Thomas: there is an action of the braid group on $D^{b}(\operatorname{coh} X)$, that is, there is a group homomorphism

$$B_{\Gamma} \rightarrow \operatorname{Auteq} \operatorname{D^b}(\operatorname{coh} X)$$

which sends $s_i \mapsto T_{E_i}$.

Brav-Thomas: the above homomorphism is injective.

Motivation II

Recall that, for an ADE (or extended ADE) graph Γ , the *braid* group is defined

$$B_{\Gamma} := \langle s_i \mid s_i s_j s_i = s_j s_i s_j \text{ or } s_i s_j = s_j s_i
angle$$

Seidel–Thomas: there is an action of the braid group on $D^{b}(\operatorname{coh} X)$, that is, there is a group homomorphism

$$B_{\Gamma} \rightarrow \operatorname{Auteq} \operatorname{D^b}(\operatorname{coh} X)$$

which sends $s_i \mapsto T_{E_i}$.

Brav-Thomas: the above homomorphism is injective.

By also throwing in the twist of E_f , there is an affine action

 $B_{\widetilde{\Gamma}} \rightarrow \operatorname{Auteq} \operatorname{D^b}(\operatorname{coh} X).$

A 3-dimensional version?

The question, motivated both by birational geometry and homological algebra, is how to lift this to dimension three.

A 3-dimensional version?

The question, motivated both by birational geometry and homological algebra, is how to lift this to dimension three.

A natural setting in which is ask the question is for a 3-fold flopping contraction $f: X \to X_{con}$. With this, the question is:

Answer 1: A birational surgery.

Answer 1: A birational surgery.

Definition

Suppose that $f: X \to X_{con}$ is a crepant projective birational morphism, contracting a curve C to a point p, such that f is an isomorphism away from C.

X X_{cc}

Then we say that $f^+: X^+ \to X_{con}$ is the flop of f if for every line bundle $\mathcal{L} = \mathcal{O}_X(D)$ on X such that -D is f-nef, then the proper transform of D is Cartier, and f^+ -nef.

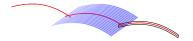
Answer 1: A birational surgery.

Definition

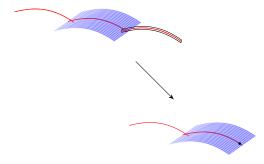
Suppose that $f: X \to X_{con}$ is a crepant projective birational morphism, contracting a curve C to a point p, such that f is an isomorphism away from C.

Then we say that $f^+: X^+ \to X_{con}$ is the flop of f if for every line bundle $\mathcal{L} = \mathcal{O}_X(D)$ on X such that -D is f-nef, then the proper transform of D is Cartier, and f^+ -nef.

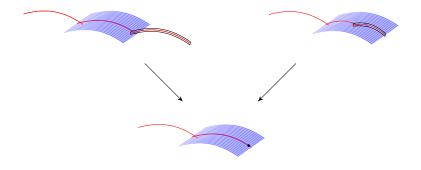




▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Answer 2: (Homological MMP) Its the solution to a universal problem in homological algebra, a *mutation* on the base X_{con} .

Answer 2: (Homological MMP) Its the solution to a universal problem in homological algebra, a *mutation* on the base X_{con} .

The Homological MMP gives us a way, via cluster theory, to produce the flop in a manner suitable for iterations.

Answer 2: (Homological MMP) Its the solution to a universal problem in homological algebra, a *mutation* on the base X_{con} .

The Homological MMP gives us a way, via cluster theory, to produce the flop in a manner suitable for iterations.

Rest of talk: we thus let $X \to X_{con}$ be a 3-fold flopping contraction, and we will construct affine and non-affine actions. Features:

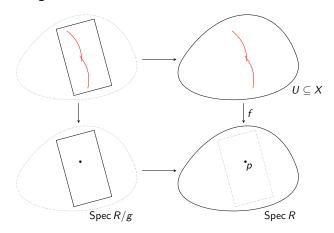
- The fibre above the origin need not be ADE any more!
- The case of 2 curves above the origin is not just A_2 .
- Objects no longer spherical: need to deform. The fibre twist is particularly technical.

From Flops to Shaded Dynkin Diagrams: The Elephant

To understand smooth 3-folds X, we are forced to understand autoequivalences on singular surfaces. As a consequence, X might as well be singular too.

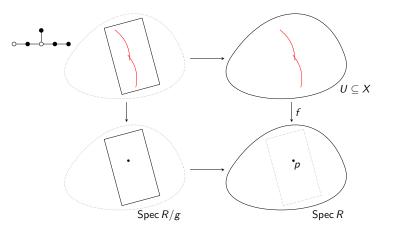
From Flops to Shaded Dynkin Diagrams: The Elephant

To understand smooth 3-folds X, we are forced to understand autoequivalences on singular surfaces. As a consequence, X might as well be singular too.



From Flops to Shaded Dynkin Diagrams: The Elephant

To understand smooth 3-folds X, we are forced to understand autoequivalences on singular surfaces. As a consequence, X might as well be singular too.



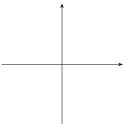
Intersection Combinatorics I

From a shaded Dynkin diagram, we produce both affine and non-affine group actions.

Intersection Combinatorics I

From a shaded Dynkin diagram, we produce both affine and non-affine group actions.

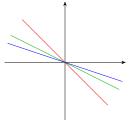
Non-affine version: A finite simplicial hyperplane arrangement is obtained as follows. In the example -, the two white dots give 2 roots in the E_6 root system, and hence span a plane. We then *intersect* this plane with all the remaining reflection hyperplanes:



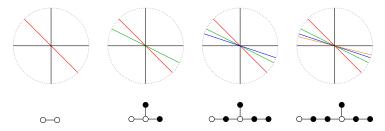
Intersection Combinatorics I

From a shaded Dynkin diagram, we produce both affine and non-affine group actions.

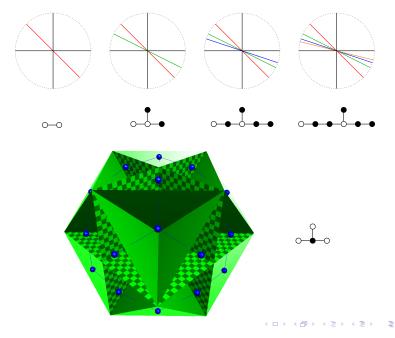
Non-affine version: A finite simplicial hyperplane arrangement is obtained as follows. In the example -, the two white dots give 2 roots in the E_6 root system, and hence span a plane. We then *intersect* this plane with all the remaining reflection hyperplanes:



Some other examples:



Some other examples:

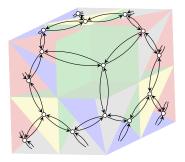


The Deligne Groupoid

Associated to every simplicial hyperplane arrangement is the *Deligne groupoid*

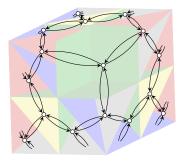
The Deligne Groupoid

Associated to every simplicial hyperplane arrangement is the *Deligne groupoid*



The Deligne Groupoid

Associated to every simplicial hyperplane arrangement is the *Deligne groupoid*



subject to the relations that identify minimal paths. It is well-known that any vertex group of this groupoid is isomorphic to the fundamental group of the complexified complement of the real hyperplane arrangement, and so we denote it $\pi_1(\mathbb{G})$.

The Non-Affine Result

Theorem

Suppose that $X \to X_{con}$ is a 3-fold flopping contraction, where X is reasonable (e.g. smooth), and each of the curves is individually floppable. Then:

1. (Donovan–W) There is a group homomorphism

 $\rho \colon \pi_1(\mathbb{G}) \to \operatorname{Auteq} \operatorname{\mathsf{D}^b}(\operatorname{\mathsf{coh}} X)$

obtained by composing flop functors.

The Non-Affine Result

Theorem

Suppose that $X \to X_{con}$ is a 3-fold flopping contraction, where X is reasonable (e.g. smooth), and each of the curves is individually floppable. Then:

1. (Donovan–W) There is a group homomorphism

 $\rho \colon \pi_1(\mathbb{G}) \to \operatorname{Auteq} \operatorname{\mathsf{D}^b}(\operatorname{\mathsf{coh}} X)$

obtained by composing flop functors.

2. (Hirano–W) ρ is injective, that is, the action is faithful.

The Non-Affine Result

Theorem

Suppose that $X \to X_{con}$ is a 3-fold flopping contraction, where X is reasonable (e.g. smooth), and each of the curves is individually floppable. Then:

1. (Donovan–W) There is a group homomorphism

 $\rho \colon \pi_1(\mathbb{G}) \to \operatorname{Auteq} \operatorname{\mathsf{D}^b}(\operatorname{coh} X)$

obtained by composing flop functors.

- 2. (Hirano–W) ρ is injective, that is, the action is faithful.
- The proofs are quite different from Seidel–Thomas and Brav–Thomas. We don't know or use generators and relations of π₁(G), and there is no 'formula' for the flop functor.
- We view $\pi_1(\mathbb{G})$ as a *pure braid group*.

Intersection Combinatorics II

Given a shaded Dynkin diagram, we produce an affine version by playing the same intersection trick, but this time inside the *Tits cone*, instead of inside the usual root system. Recall that

$$\mathit{Tits} = igcup_{w \in \widetilde{W}} w(\mathit{C}_+).$$

Intersection Combinatorics II

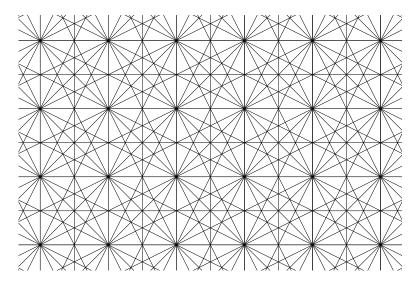
Given a shaded Dynkin diagram, we produce an affine version by playing the same intersection trick, but this time inside the *Tits cone*, instead of inside the usual root system. Recall that

$$\mathit{Tits} = igcup_{w \in \widetilde{W}} w(\mathit{C}_+).$$

- This is harder to draw! It takes quite a bit of effort, and new combinatorics, to describe the intersection.
- Upshot: when the number of nodes equals two, we obtain a tiling of the plane.

Remarkably, the tilings produced are new.

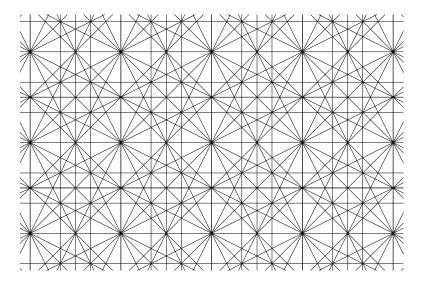
Some Examples





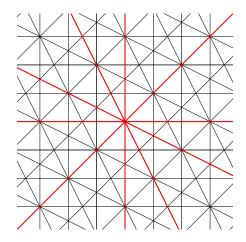
・ロ ・ ・ (日 ・ ・ 注 ・ く 注 ・ 注 ・ り へ ()
14/17

Some Examples



The Arrangement Groupoid

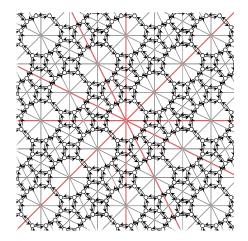
Now, form an infinite groupoid $\mathbb{G}_{\mathsf{aff}}$ in the natural way



・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ ()
16 / 17

The Arrangement Groupoid

Now, form an infinite groupoid $\mathbb{G}_{\mathsf{aff}}$ in the natural way



subject to the tile relations. Write $\pi_1(\mathbb{G}_{\text{aff}})$ for a vertex group of this groupoid.

The Main Result

Theorem (Iyama–W)

Suppose that $X \to X_{con}$ is a 3-fold flopping contraction, where X is reasonable (e.g. smooth), and each of the curves is individually floppable. Then there is a group homomorphism

 $\widetilde{\rho} \colon \pi_1(\mathbb{G}_{\mathsf{aff}}) \to \operatorname{Auteq} \operatorname{\mathsf{D}^b}(\operatorname{\mathsf{coh}} X).$

The Main Result

Theorem (Iyama–W)

Suppose that $X \to X_{con}$ is a 3-fold flopping contraction, where X is reasonable (e.g. smooth), and each of the curves is individually floppable. Then there is a group homomorphism

 $\widetilde{\rho} \colon \pi_1(\mathbb{G}_{\mathsf{aff}}) \to \operatorname{Auteq} \mathsf{D}^\mathsf{b}(\operatorname{coh} X).$

- ► We view π₁(G_{aff}) as some kind of analogue of an *affine pure* braid group, and we refer to the above as the *affine action*.
- ► The tilings of the plane above are only the baby case where there are two flopping curves! The theorem also deals with the case when there are more curves: these give 'tilings' of ℝ^d.