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Purpose of this Talk

To explain the following tiling, which I view as an a�ne version of
symmetries of the pentagon D

5

, and its applications.
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We prepare the following observation for preprojective algebras of extended Dynkin
type.

Lemma 3.17. Let � be a preprojective algebra of extended Dynkin type.

(1) The center R of � is a simple singularity in dimension two.
(2) There is an isomorphism � � EndR(M) for some Cohen-Macaulay R-module M .
(3) �p is Morita equivalent to the local ring Rp for all non-maximal primes p of R.

Proof. (1) and (2) are well-known [CBH], and (3) holds since �p � EndRp(Mp) holds Mp

is a free Rp-module for all non-maximal primes. �
Now we are ready to prove 3.2(3).

Proof. Again set � := eJ �eJ , and consider C := ��
f�Hom� (T,�) Im f . By 3.16, we only have

to check that dimk C < �.
To prove this, it su�ces to show that Cp = 0 holds for any non-maximal prime ideal p

of R. Since �p
⇠= eJ �peJ is Morita equivalent to the local ring Rp by 3.17(3), any tilting

�p-module is a progenerator. Since tilting modules are preserved by localization, it follows
that Tp a progenerator, and so certainly

�p =
�

f�Hom�p (Tp,�p)

Im f

holds. Since Hom� (T, �)p
⇠= Hom�p(Tp, �p), this implies that Cp = 0. �

3.6. The J -cone Groupoid.

Example 3.18. Continuing the example in 2.26, the J -cone monoid is generated by

4. Applications to 3-folds

4.1. Application to cDV singularities. Let R be a local Gorenstein normal ring, ref R
the category of reflexive R-modules and CM R the category of Cohen-Macaulay R-modules.

Definition 4.1. Recall

(1) M � ref R is called modifying if EndR(M) � CM R.
(2) An R-module M is called maximal modifying if it is modifying, and maximal with

respect to this property; equivalently

add M = {X � ref R | EndR(M � X) � CM R}.

The following properties are elementary [IW, 2.7, 5.12].

Lemma 4.2. With notation as above,

(1) If M � CM R is a modifying R-module, then so is R � M . Therefore a maximal
modifying R-module M is Cohen-Macaulay if and only if it is a generator (that
is, R � add M).

If further dim R = 3, then

(2) M � CM R is modifying if and only if Ext1R(M, M) has positive depth.
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Motivation I: Surfaces

Suppose that f : X ! C2/G is the minimal resolution of a Kleinian
singularity, that is, G  SL(2,C). The key point is that the fibre
C := f �1(0) with reduced scheme structure decomposes

C red =
n[

i=1

Ci

with each Ci
⇠= P1. The curves intersect in an ADE arrangement.

The sheaves Ei := OCi (�1), and also the sheaf Ef := OC , are
examples of spherical objects, namely

E ⌦ !X
⇠= E and ExttX (E ,E ) ⇠=

⇢
C if t = 0, 2
0 else.
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Motivation II

Recall that, for an ADE (or extended ADE) graph �, the braid
group is defined

B
�

:= hsi | si sjsi = sjsi sj or si sj = sjsi i

Seidel–Thomas: there is an action of the braid group on
Db(cohX ), that is, there is a group homomorphism

B
�

! Auteq Db(cohX )

which sends si 7! TEi .

Brav–Thomas: the above homomorphism is injective.

By also throwing in the twist of Ef , there is an a�ne action

Be
�

! Auteq Db(cohX ).
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A 3-dimensional version?

The question, motivated both by birational geometry and
homological algebra, is how to lift this to dimension three.

A natural setting in which is ask the question is for a 3-fold
flopping contraction f : X ! X

con

. With this, the question is:

Dim Use Curves E
1

, . . . ,En Add in Ef

2 B
�

! Db(cohX ) Be
�

! Db(cohX )

3 ? ??
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What is a flop?

Answer 1: A birational surgery.

Definition

Suppose that f : X ! X
con

is a crepant projective birational
morphism, contracting a curve C to a point p, such that f is an
isomorphism away from C .

X

X
con

X+

Then we say that f + : X+ ! X
con

is the flop of f if for every line
bundle L = OX (D) on X such that �D is f -nef, then the proper
transform of D is Cartier, and f +-nef.
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What is a flop?

Answer 2: (Homological MMP) Its the solution to a universal
problem in homological algebra, a mutation on the base X

con

.

The Homological MMP gives us a way, via cluster theory, to
produce the flop in a manner suitable for iterations.

Rest of talk: we thus let X ! X
con

be a 3-fold flopping
contraction, and we will construct a�ne and non-a�ne actions.
Features:

I The fibre above the origin need not be ADE any more!

I The case of 2 curves above the origin is not just A
2

.

I Objects no longer spherical: need to deform. The fibre twist is
particularly technical.
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From Flops to Shaded Dynkin Diagrams: The Elephant

To understand smooth 3-folds X , we are forced to understand
autoequivalences on singular surfaces. As a consequence, X might
as well be singular too.

p

f

SpecRSpecR/g

U ✓ X
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Intersection Combinatorics I

From a shaded Dynkin diagram, we produce both a�ne and
non-a�ne group actions.

Non-a�ne version: A finite simplicial hyperplane arrangement is

obtained as follows. In the example , the two white dots
give 2 roots in the E

6

root system, and hence span a plane. We
then intersect this plane with all the remaining reflection
hyperplanes:
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Some other examples:
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The Deligne Groupoid

Associated to every simplicial hyperplane arrangement is the
Deligne groupoid

subject to the relations that identify minimal paths. It is
well-known that any vertex group of this groupoid is isomorphic to
the fundamental group of the complexified complement of the real
hyperplane arrangement, and so we denote it ⇡

1

(G).
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The Non-A�ne Result

Theorem

Suppose that X ! X
con

is a 3-fold flopping contraction, where X
is reasonable (e.g. smooth), and each of the curves is individually
floppable. Then:

1. (Donovan–W) There is a group homomorphism

⇢ : ⇡
1

(G) ! Auteq Db(cohX )

obtained by composing flop functors.

2. (Hirano–W) ⇢ is injective, that is, the action is faithful.

I The proofs are quite di↵erent from Seidel–Thomas and
Brav–Thomas. We don’t know or use generators and relations
of ⇡

1

(G), and there is no ‘formula’ for the flop functor.

I We view ⇡
1

(G) as a pure braid group.
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Intersection Combinatorics II

Given a shaded Dynkin diagram, we produce an a�ne version by
playing the same intersection trick, but this time inside the Tits
cone, instead of inside the usual root system. Recall that

Tits =
[

w2fW

w(C
+

).

I This is harder to draw! It takes quite a bit of e↵ort, and new
combinatorics, to describe the intersection.

I Upshot: when the number of nodes equals two, we obtain a
tiling of the plane.

Remarkably, the tilings produced are new.
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Some Examples

8 OSAMU IYAMA AND MICHAEL WEMYSS

Example 7.6. For ,

which is ?? with extra vertical hyperplanes. It is made from 12, 8, 6 and 4-gons.

Example 7.7. For , the tiling is

which is made from 16, 8, 6 and 4-gons.
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Some Examples

10 OSAMU IYAMA AND MICHAEL WEMYSS

Example 7.10. For

which is made from 16, 12, 8, 6 and 4-gons.

Example 7.11. For ,

which is made from 16, 12, 10, 8, 6 and 4-gons.
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The Arrangement Groupoid

Now, form an infinite groupoid G
a↵

in the natural way

subject to the tile relations. Write ⇡
1

(G
a↵

) for a vertex group of
this groupoid.
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The Main Result

Theorem (Iyama–W)

Suppose that X ! X
con

is a 3-fold flopping contraction, where X
is reasonable (e.g. smooth), and each of the curves is individually
floppable. Then there is a group homomorphism

e⇢ : ⇡
1

(G
a↵

) ! Auteq Db(cohX ).

I We view ⇡
1

(G
a↵

) as some kind of analogue of an a�ne pure
braid group, and we refer to the above as the a�ne action.

I The tilings of the plane above are only the baby case where
there are two flopping curves! The theorem also deals with the
case when there are more curves: these give ‘tilings’ of Rd .
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